重庆市 两江新区
19802308676 19802308676@139.com
08:30-22:30 22:30-08:30
本报告简要讨论了几种常用于评估表面形貌(也称表面结构或表面光洁度)的重要计量方法和标准定义。随着纳米技术、薄涂层以及电路和装置小型化的出现,表面计量学已经成为一个极其重要的科学和工程领域。其从微米级和亚微米级特征的角度研究表面形貌的精确、代表性表征。这些特征构成了表面的波纹度、粗糙度和层次。形貌在确定许多现代技术、组件、部件和产品(例如电机、涂层、电子设备等)所用材料的机械、热、光学和电气性能方面起着至关重要的作用。
什么是表面计量学?它为什么有用?
表面计量学是测量表面的特征(规则图案、不规则性、粗糙度、波纹度、关键尺寸等)。表面形貌(也称为表面纹理或光洁度)在很大程度上决定了其机械和物理性质,例如摩擦、粘附、氧化、导热性和导电性等。形貌对于先进技术和设备(高级涂层、轴承、热、光学和电子/半导体装置)所用的材料很重要。例如,较大的表面粗糙度通常会增加两个接触部件之间的摩擦力。部件之间的摩擦力变大会导致更快的磨损和更短的寿命。半导体表面微小不规则性的形成可引起电荷局部化和非均匀电学性质。由于氧化、表面张力、污染或加工,表面区域的性能通常而与主体区域不同,表面区域可大致定义为材料表层的前100个原子层。例如,机械或化学抛光或蚀刻等材料制备方法会导致表面缺陷和粗糙。由于用于制备表面的大多数工艺(机械或化学)会导致缺陷和不规则性,因此需要计量仪器和方法来评估表面形貌,并确定其对设备性质(包括性能、可靠性和使用寿命)的影响。表面计量学方法用于检查和测量表面不同长度尺度和空间频率的形貌。粗糙度通常通过测量表面图案或不规则性的高度、宽度和周期性/频率来确定。波纹度由比粗糙度更大尺度(较低频率范围)的表面不规则性定义。均匀表面是各向同性的。层次是指表面特征的方向性(各向异性),其通常是由于材料制造或处理引起的。下文将讨论这些标准形貌或纹理参数(粗糙度、波纹度、层次和缺陷)。表面表征方法肉眼、指尖和低分辨率光学显微镜通常可快速评估宏观特征和大缺陷。然而,精细表面轮廓和形貌的详细测量则需要先进的表面表征技术。可使用各种高分辨率技术,通过二维或三维(2D或3D)测量来确定表面形貌。为特定目的选择合适的技术非常重要,因为它们都有其优势和局限性。在这里,我们仅介绍材料科学中一些最广泛使用的方法,例如表面探针(触针、AFM)、光学与干涉测量方法和电子束方法。测量落在表面线轮廓或区域上的点的垂直(z)高度,并显示表面的2D轮廓或3D图。使用定义的统计分析方法分析数据,所得值用作表征表面形貌的参数,更具体地说,即表面粗糙度、波纹度、层次和缺陷。可使用各种方法获取2D或3D的表面形貌图像。最常用的是[1-3]:接触/非接触式轮廓测量法和探针显微镜,其中形貌数据通过表面上的精细探针扫描来收集;使用光的干涉测量、聚焦和相位检测或共聚焦显微镜的光学轮廓测量法;以及使用通常需要特殊软件来显示3D形貌的扫描电子显微镜(SEM)。常用的探针成像方法是原子力显微镜(AFM)。虽然其可获得非常高的横向(XY)和垂直(Z)分辨率,但获取形貌数据非常缓慢,且存在表面改变或损坏的风险。此外,由于磨损和污染,探针的形状和尺寸可能在扫描期间发生改变。这种现象会影响所获取表面形貌中特征的外观,因为探针和特征几何形状混合在一起,这是一种卷积[4]。图1显示了一个示例。通过AFM获取良好结果,还要求用户拥有一定的经验。
表面计量学是测量表面的特征(规则图案、不规则性、粗糙度、波纹度、关键尺寸等)。表面形貌(也称为表面纹理或光洁度)在很大程度上决定了其机械和物理性质,例如摩擦、粘附、氧化、导热性和导电性等。形貌对于先进技术和设备(高级涂层、轴承、热、光学和电子/半导体装置)所用的材料很重要。例如,较大的表面粗糙度通常会增加两个接触部件之间的摩擦力。部件之间的摩擦力变大会导致更快的磨损和更短的寿命。半导体表面微小不规则性的形成可引起电荷局部化和非均匀电学性质。
由于氧化、表面张力、污染或加工,表面区域的性能通常而与主体区域不同,表面区域可大致定义为材料表层的前100个原子层。例如,机械或化学抛光或蚀刻等材料制备方法会导致表面缺陷和粗糙。由于用于制备表面的大多数工艺(机械或化学)会导致缺陷和不规则性,因此需要计量仪器和方法来评估表面形貌,并确定其对设备性质(包括性能、可靠性和使用寿命)的影响。
表面计量学方法用于检查和测量表面不同长度尺度和空间频率的形貌。粗糙度通常通过测量表面图案或不规则性的高度、宽度和周期性/频率来确定。波纹度由比粗糙度更大尺度(较低频率范围)的表面不规则性定义。均匀表面是各向同性的。层次是指表面特征的方向性(各向异性),其通常是由于材料制造或处理引起的。下文将讨论这些标准形貌或纹理参数(粗糙度、波纹度、层次和缺陷)。
表面表征方法
肉眼、指尖和低分辨率光学显微镜通常可快速评估宏观特征和大缺陷。然而,精细表面轮廓和形貌的详细测量则需要先进的表面表征技术。
可使用各种高分辨率技术,通过二维或三维(2D或3D)测量来确定表面形貌。为特定目的选择合适的技术非常重要,因为它们都有其优势和局限性。在这里,我们仅介绍材料科学中一些最广泛使用的方法,例如表面探针(触针、AFM)、光学与干涉测量方法和电子束方法。
测量落在表面线轮廓或区域上的点的垂直(z)高度,并显示表面的2D轮廓或3D图。使用定义的统计分析方法分析数据,所得值用作表征表面形貌的参数,更具体地说,即表面粗糙度、波纹度、层次和缺陷。
可使用各种方法获取2D或3D的表面形貌图像。最常用的是[1-3]:
接触/非接触式轮廓测量法和探针显微镜,其中形貌数据通过表面上的精细探针扫描来收集;
使用光的干涉测量、聚焦和相位检测或共聚焦显微镜的光学轮廓测量法;以及
使用通常需要特殊软件来显示3D形貌的扫描电子显微镜(SEM)。
常用的探针成像方法是原子力显微镜(AFM)。虽然其可获得非常高的横向(XY)和垂直(Z)分辨率,但获取形貌数据非常缓慢,且存在表面改变或损坏的风险。此外,由于磨损和污染,探针的形状和尺寸可能在扫描期间发生改变。这种现象会影响所获取表面形貌中特征的外观,因为探针和特征几何形状混合在一起,这是一种卷积[4]。图1显示了一个示例。通过AFM获取良好结果,还要求用户拥有一定的经验。
表面表征的光学方法可以具有高垂直(z)分辨率,但不如探针方法或电子显微镜的横向(xy)分辨率。但是形貌采集要快得多。这意味着光学方法可提供大面积的表面形貌数据,使其更适用于可靠、准确的统计分析。
SEM也可获得非常高的分辨率,但需要在真空室中进行成像。如果材料的导电性不够,则在电子束中会发生充电,因此样品必须涂一层导电膜。采集图像通常会很耗时。
来源:徕卡显微系统
https://mp.weixin.qq.com/s/em0_cPAcaUIXAo6VRIjx8w
光学显微镜是由两组透镜组成的光学折射系统,其中焦距较短、靠近观察物、成实像的透镜组称为物镜,焦距较长、靠近眼瞳、成虚像的透镜组则称为目镜。位于物镜前方的观察物体由物镜作放大后成倒立的实像。光学显微镜分为正置显微镜和倒置显微镜
然后,该实像再被目镜作二级放大,在位于人眼的明视距离处,得到放大效果的倒立虚像。通过显微镜机械调焦系统,可以调整并满足相对于物镜的成像条件以及观察者明视距离的二次成像条件。
光学显微镜分为正置显微镜和倒置显微镜。两者区别为:
1、物镜与载物台的相对位置不同:正置显微镜物镜转换盘朝向是向下的,载物台在物镜下方;倒置显微镜的物镜是向上的,载物台在物镜上方。
2.适用条件不同:正置显微镜物镜适合观察切片等;倒置显微镜适合观察到培养皿里面的活体细胞。
3.工作距离不同:正置显微镜物镜工作距离比较短;倒置显微镜工作距离长。
光学显微镜是由许多光学元件和金属零件组成,因此保证各光学元件的清洁及系统的稳定,对保持显微镜高效运作,延长其使用寿命大有裨益。接下来就请大家跟随蔡司君一起学习一下光学显微镜日常维护保养的一些相关知识吧。
设备放置和使用环境的维护
▪防潮
当空气太潮湿时,光学镜片容易生霉,起雾;机械零件受潮后,容易生锈。平时显微镜室应保证65%以下的湿度,潮湿地区应在室内配置除湿机。
▪控温
为避免热胀冷缩引起镜片开胶与脱落,显微镜室室温建议维持在20-24℃。
▪防尘
光学元件表面落入灰尘,不仅影响光线通过,而且经光学系统放大后,会生成很大的污斑,影响观察。灰尘、砂粒落入机械部分,还会增加磨损,危害同样很大。故显微镜室应该保持干净,显微镜不用时应用防尘罩罩住以防止落灰。
▪防腐蚀
显微镜不能和具有腐蚀性和强挥发性的化学试剂放在一起,如硫酸、盐酸、强碱等。
▪防震
显微镜的光学系统和机械系统都是经过精密校正的,在使用及保管期间要防震,同时也要注意避免阳光直射,避免空调直吹显微镜,以保证它固有的高性能。
▪稳压
显微镜室供电电压波动不应超过正常电压的±10%,电压不稳的地区应加装稳压电源,保护显微镜系统不受损害。
机械系统维护保养
▪油镜使用后用干净柔软的专业擦镜纸蘸无水乙醇采用螺旋渐进的方式轻轻擦干净油的物镜;
√ 留意擦镜纸的两个面,纹路是不同的:其中一面是粗糙的,另一面更光滑些,要使用更光滑的那一面来清洁。一般不建议用干的擦镜纸直接擦拭,同样可能划伤镜头。
▪目镜和物镜的擦试方法
√ 准备工作:在长纤维脱脂棉签顶端蘸上无水乙醇
√ 目镜:从中央部分开始,采用螺旋渐进的方式轻轻逐步擦到边缘
保持光学元件的清洁对于保证有好的光学性能非常有必要,当显微镜不用时,显微镜应当用专门的防尘罩盖住。如果光学仪器上面有灰尘,在擦拭表面前用软毛刷去污物。光学表面可以使用无绒棉布,镜头纸或有专用的镜头清洁液进行清洁。清洁过程中尽量避免过多使用清洁剂,避免溶剂进入目镜背部,造成观察的清晰度下降甚至仪器的损坏。显示镜中目镜和物镜的表面镜头最容易受到灰尘和油黏上。如果发现清晰度下降,甚至出现雾状现象,可以使用放大镜进行检查目镜。
如果发现光学元件上面出现雾状或者霉斑现象,请尽快联系徕卡显微镜维修专业人士,对显微镜进行相关的维护保养工作,让显微镜的工作能够顺顺利利进行。
物镜是显微镜中一个重要组成部分。物镜直接决定着显微镜性能好坏。由于被安装在物镜转换器上,最佳接近所需要观察的物体,因此被叫做物镜。
物镜根据使用条件的不同分为了干燥物镜和浸液物镜。其中浸液物镜又可以分成水浸物镜和油浸物镜。
物镜的主要参数主要是放大倍数、数值孔径和工作距离。放大倍数指的是眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。物镜的作用是将标本作一次放大,它是决定显微镜性能的最重要部件。
显微镜的分辨力大小由物镜的分辨力来决定,物镜的分辨力又是由它的数值孔径和照明光线波长而决定的。
关于徕卡单目显微镜、徕卡双目显微镜、徕卡三目显微镜之间的区别主要是目镜的个数不同。
单目显微镜只有一个目镜,只能用一个眼睛进行观察,是单光路通道。双目显微镜有两个目镜,可以双眼同时观察,是双通道光路。三目显微镜除了可用双眼来观察两目外,还有一目是用来外接电脑和数码相机的。可以通过外接电脑或者数码相机对物体进行观察、记录。
市面上常见的是双目显微镜和三目显微镜。三目显微镜又是双目显微镜的延伸、扩展。三目显微镜在内部设计分光棱镜或者多组棱镜配置的时候,可将显微镜光线通过设计分别输出双目和第三目。三目显微镜在于能达到显微镜链接电脑或者相机进行拍照,图像处理,遥控显微镜操作等功能。
金相显微镜适用于电子、冶金、化工和仪器仪表专用,可用于观察透明、半透明、不透明的物质。
下面我们就来形象的说一说可以用于哪些场所,比如金属陶瓷、集成块、印刷电路板、液晶板、纤维以及其他非金属材料。可以适用于医药、农林、公安、学校、科研部门进行观察分析使用。
同样也是金属学、矿物学以及紧密工程学等研究时非常理想的使用仪器。
金相显微镜通过运用精锐的光学显微镜技术,实现光电转换技术,计算机成像的工作结合实现高科技化产品。
金相显微镜实现了可人工观察金相图像,还可以在计算机显示器上非常方便使用观察到金相图像。可以随时捕捉金相图片。
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的杨森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。电子显微镜是在1926年,被汉斯·布什发明出来的。
显微镜中文名称显微镜,英文名称microscope。
生物显微镜
显微镜是人类这个时期最伟大的发明物之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。
显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。
最早的显微镜是16世纪末期在荷兰制造出来的。发明者是亚斯·詹森,荷兰眼镜商,或者另一位荷兰科学家汉斯·利珀希,他们用两片透镜制作了简易的显微镜,但并没有用这些仪器做过任何重要的观察。
后来有两个人开始在科学上使用显微镜。第一个是意大利科学家伽利略。他通过显微镜观察到一种昆虫后,第一次对它的复眼进行了描述。第二个是荷兰亚麻织品商人安东尼·凡·列文虎克(1632年-1723年),他自己学会了磨制透镜。他第一次描述了许多肉眼所看不见的微小植物和动物。
1931年,恩斯特·鲁斯卡通过研制电子显微镜,使生物学发生了一场革命。这使得科学家能观察到像百万分之一毫米那样小的物体。1986年他被授予诺贝尔奖。
光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。
显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。
光学显微镜通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是最为关键的,它由目镜和物镜组成。早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。光学显微镜的种类很多,主要有明视野显微镜(普通光学显微镜)、暗视野显微镜、荧光显微镜、相差显微镜、激光扫描共聚焦显微镜、偏光显微镜、微分干涉差显微镜、倒置显微镜。
电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。自1938年Ruska发明第一台透射电子显微镜至今,除了透射电镜本身的性能不断的提高外,还发展了其他多种类型的电镜。如扫描电镜、分析电镜、超高压电镜等。结合各种电镜样品制备技术,可对样品进行多方面的结构 或结构与功能关系的深入研究。显微镜被用来观察微小物体的图像。常用于生物、医药及微小粒子的观测。电子显微镜可把物体放大到200万倍。
台式显微镜,主要是指传统式的显微镜,是纯光学放大,其放大倍率较高,成像质量较好,但一般体积较大,不便于移动,多应用于实验室内,不便外出或现场检测。
便携式显微镜,主要是近几年发展出来的数码显微镜与视频显微镜系列的延伸。和传统光学放大不同,手持式显微镜都是数码放大,其一般追求便携,小巧而精致,便于携带;且有的手持式显微镜有自己的屏幕,可脱离电脑主机独立成像,操作方便,还可集成一些数码功能,如支持拍照,录像,或图像对比,测量等功能。
数码液晶显微镜,最早是由上海光密仪器公司研发生产的,该显微镜保留了光学显微镜的清晰,汇集了数码显微镜的强大拓展、视频显微镜的直观显示和便携式显微镜的简洁方便等优点。
早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
1590年,荷兰Z·Jansen(詹森)和意大利人的眼镜制造者已经造出类似显微镜的放大仪器。
1611年,Kepler(克卜勒):提议复合式显微镜的制作方式。
1665年,R·Hooke(罗伯特·虎克):「细胞」名词的由来便由胡克利用复合式显微镜观察软木的木栓组织上的微小气孔而得来的。
1674年,A·V·Leeuwenhoek(列文虎克):发现原生动物学的报导问世,并于九年后成为首位发现「细菌」存在的人。
1833年,Brown(布朗):在显微镜下观察紫罗兰,随后发表他对细胞核的详细论述。
1838年,Schlieden and Schwann(施莱登和施旺):皆提倡细胞学原理,其主旨即为「有核细胞是所有动植物的组织及功能之基本元素」。
1857年,Kolliker(寇利克):发现肌肉细胞中之线粒体。
1876年,Abbe(阿比):剖析影像在显微镜中成像时所产生的绕射作用,试图设计出最理想的显微镜。
1879年,Flrmming(佛莱明):发现了当动物细胞在进行有丝分裂时,其染色体的活动是清晰可见的。
1881年,Retziue(芮祖):动物组织报告问世,此项发表在当世尚无人能凌驾逾越。然而在20年后,却有以Cajal(卡嘉尔)为首的一群组织学家发展出显微镜染色观察法,此举为日后的显微解剖学立下了基础。
1882年,Koch(寇克):利用苯安染料将微生物组织进行染色,由此他发现了霍乱及结核杆菌。往后20年间,其它的细菌学家,像是Klebs 和 Pasteur(克莱柏和帕斯特)则是藉由显微镜下检视染色药品而证实许多疾病的病因。
1886年,Zeiss(蔡司):打破一般可见光理论上的极限,他的发明--阿比式及其它一系列的镜头为显微学者另辟一新的解像天地。
1898年,Golgi(高尔基):首位发现细菌中高尔基体的显微学家。他将细胞用硝酸银染色而成就了人类细胞研究上的一大步。
1924年,Lacassagne(兰卡辛):与其实验工作伙伴共同发展出放射线照相法,这项发明便是利用放射性钋元素来探查生物标本。
1930年,Lebedeff(莱比戴卫):设计并搭配第一架干涉显微镜。另外由Zernicke(卓尼柯)在1932年发明出相位差显微镜,两人将传统光学显微镜延伸发展出来的相位差观察使生物学家得以观察染色活细胞上的种种细节。
1941年,Coons(昆氏):将抗体加上萤光染剂用以侦测细胞抗原。
1952年,Nomarski(诺马斯基):发明干涉相位差光学系统。此项发明不仅享有专利权并以发明者本人命名之。
1981年,Allen and Inoue(艾伦及艾纽):将光学显微原理上的影像增强对比,发展趋于完美境界。
1988年,Confocal(共轭焦)扫描显微镜在市场上被广为使用。
显微镜分为 光学显微镜和电子显微镜。
简介
它是在1590年由荷兰的詹森父子所首创。光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米。光学显微镜的种类很多,除一般的外,主要有暗视野显微镜一种具有暗视野聚光镜,从而使照明的光束不从中央部分射入,而从四周射向标本的显微镜.荧光显微镜以紫外线为光源,使被照射的物体发出荧光的显微镜。结构为:目镜,镜筒,转换器,物镜,载物台,通光孔,遮光器,压片夹,反光镜,镜座,粗准焦螺旋,细准焦螺旋,镜臂,镜柱。
暗视野显微镜
暗视野显微镜由于不将透明光射入直接观察系统,无物体时,视野暗黑,不可能观察到任何物体,当有物体时,以物体衍射回的光与散射光等在暗的背景中明亮可见。在暗视野观察物体,照明光大部分被折回,由于物体(标本)所在的位置结构,厚度不同,光的散射性,折光等都有很大的变化。
相位差显微镜
相位差显微镜的结构: 相位差显微镜,是应用相位差法的显微镜。因此,比通常的显微镜要增加下列附件:
(1) 装有相位板(相位环形板)的物镜,相位差物镜。
(2) 附有相位环(环形缝板)的聚光镜,相位差聚光镜。
(3) 单色滤光镜-(绿)。
各种元件的性能说明
(1) 相位板使直接光的相位移动 90°,并且吸收减弱光的强度,在物镜后焦平面的适当位置装置相位板,相位板必须确保亮度,为使衍射光的影响少一些,相位板做成环形状。
(2) 相位环(环状光圈)是根据每种物镜的倍率,而有大小不同,可用转盘器更换。
(3) 单色滤光镜系用中心波长546nm(毫微米)的绿色滤光镜。通常是用单色滤光镜入观察。相位板用特定的波长,移动90°看直接光的相位。当需要特定波长时,必须选择适当的滤光镜,滤光镜插入后对比度就提高。此外,相位环形缝的中心,必须调整到正确方位后方能操作,对中望远镜
相位差显微镜的整体外形就是起这个作用部件。
视频显微镜
将传统的显微镜与摄象系统,显示器或者电脑相结合,达到对被测物体的放大观察的目的。
最早的雏形应该是相机型显微镜,将显微镜下得到的图像通过小孔成象的原理,投影到感光照片上,从而得到图片。或者直接将照相机与显微镜对接,拍摄图片。随着CCD摄像机的兴起,显微镜可以通过其将实时图像转移到电视机或者监视器上,直接观察,同时也可以通过相机拍摄。80年代中期,随着数码产业以及电脑业的发展,显微镜的功能也通过它们得到提升,使其向着更简便更容易操作的方面发展。到了90年代末,半导体行业的发展,晶圆要求显微镜可以带来更加配合的功能,硬件与软件的结合,智能化,人性化,使显微镜在工业上有了更大的发展。
荧光显微镜
在萤光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生荧光,然后必须在激发光和荧光混合的光线中,单把荧光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。
荧光显微镜原理:
(A) 光源:光源辐射出各种波长的光(以紫外至红外)。
(B) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。
(C) 荧光标本:一般用荧光色素染色。
(D) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射荧光,在荧光中也有部分波长被选择透过。 以紫外线为光源,使被照射的物体发出荧光的显微镜。电子显微镜是在1931年在德国柏林由克诺尔和哈罗斯卡首先装配完成的。这种显微镜用高速电子束代替光束。由于电子流的波长比光波短得多,所以电子显微镜的放大倍数可达80万倍,分辨的最小极限达0.2纳米。1963年开始使用的扫描电子显微镜更可使人看到物体表面的微小结构。
显微镜被用来放大微小物体的图像。一般应用于对生物、医药、微观粒子等观测。
(1)利用微微动载物台之移动,配全目镜之十字座标线,作长度量测。
(2)利用旋转载物台与目镜下端之游标微分角度盘,配全合目镜之址字座标线,作角度量测,令待测角一端对准十字线与之重合,然后再让另一端也重合。
(3)利用标准检测螺纹的节距、节径、外径、牙角及牙形等尺寸或外形。
(4)检验金相表面的晶粒状况。
(5)检验工件加工表面的情况。
(6)检测微小工件的尺寸或轮廓是否与标准片相符。
偏光显微镜
偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。
偏振光显微镜
(1)偏光显微镜的特点
将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。
(2)偏光显微镜的基本原理
偏光显微镜的原理比较复杂,在此不作过多介绍,偏光显微镜必须具备以下附件:起偏镜,检偏镜,补偿器或相位片,专用无应力物镜,旋转载物台。
超声波显微镜
超声波扫描显微镜的特点在于能够精确的反映出声波和微小样品的弹性介质之间的相互作用,并对从样品内部反馈回来的信号进行分析!图像上(C-Scan)的每一个象素对应着从样品内某一特定深度的一个二维空间坐标点上的信号反馈,具有良好聚焦功能的Z.A传感器同时能够发射和接收声波信号。一副完整的图像就是这样逐点逐行对样品扫描而成的。反射回来的超声波被附加了一个正的或负的振幅,这样就可以用信号传输的时间反映样品的深度。用户屏幕上的数字波形展示出接收到的反馈信息(A-Scan)。设置相应的门电路,用这种定量的时间差测量(反馈时间显示),就可以选择您所要观察的样品深度。
解剖显微镜
解剖镜(立体显微镜、体视显微镜)
解剖显微镜,又被称为实体显微镜、体视显微镜或立体显微镜,是为了不同的工作需求所设计的显微镜。利用解剖显微镜观察时,进入两眼的光各来自一个独立的路径,这两个路径只夹一个小小的角度,因此在观察时,样品可以呈现立体的样貌。解剖显微镜的光路设计有两种: The Greenough Concept和The Telescope Concept。解剖显微镜常常用在一些固体样本的表面观察,或是解剖、钟表制作和小电路板检查等工作上。
共聚焦显微镜
从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。激光扫描共聚焦显微镜[Confocal Laser Scanning Microscope(CLSM或LSCM)]在反射光的光路上加上了一块半反半透镜(dichroic mirror),将已经通过透镜的反射光折向其它方向,在其焦点上有一个带有针孔(Pinhole),小孔就位于焦点处,挡板后面是一个 光电倍增管(photomultiplier tube,PMT)。可以想像,探测光焦点前后的反射光通过这一套共焦系统,必不能聚焦到小孔上,会被挡板挡住。于是光度计测量的就是焦点处的反射光强度。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描
金相显微镜
金相显微镜主要用于鉴定和分析金属内部结构组织,它是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,该仪器配用摄像装置,可摄取金相图谱,并对图谱进行测量分析,对图象进行编辑、输出、存储、管理等功能。 国内厂家较多,历史悠久。
关于我们
联系我们
19802308676
周一至周日8:30—22:30